
Large-Scale Nonlinear Optimization
in Circuit Tuning

Andreas Wächter

IBM T.J. Watson Research Center

Department of Mathematical Sciences

andreasw@watson.ibm.com

NACDM 2004

Santa Fe, New Mexico

June 25, 2004

JOPT 05/04 – p. 1



Outline

Circuit Tuning
Nonlinear optimization problem formulation
Simulation of gates

IPOPT
Interior point method for large-scale nonlinear optimization
Filter line search procedure

Numerical results

Collaborators:

Circuit tuning: Andrew R. Conn, Chandu Visweswariah,
Michael Henderson (IBM Watson)

EDA Department, IBM Fishkill, NY

IPOPT: Lorenz T. Biegler (Carnegie Mellon University)

JOPT 05/04 – p. 2



Circuit Tuning

JOPT 05/04 – p. 3



Digital Circuit

JOPT 05/04 – p. 4



Digital Circuit

Basic building blocks:
Transistors (switches); Gates (logical units)

Connected by wires

JOPT 05/04 – p. 4



Digital Circuit

t

V

1

0

t

V

1

0

t

V

1

0

t

V

1

0

t

V

1

0

Signals arrive at the inputs, pass through the circuit, and leave
at the outputs

JOPT 05/04 – p. 4



Digital Circuit

Can change the “speed” of a gate by changing the widths of its
transistors (PFETs and NFETs)

JOPT 05/04 – p. 4



Circuit Tuning

Want to optimize aspects of the digital circuit
Delay of signals
Area requirement
Power consumption
Combination of above

by changing widths of transistors

Often, overall circuit too large (CPU has few 100 million transistors)

Split into “macros” and fix transistors −→ suboptimal solutions

Currently, we can tune circuits with up to 71,022 transistors
(19,576 independent)

Strong incentive to be able to tune larger circuits more quickly

JOPT 05/04 – p. 5



Mathematical Formulation (Static Timing)

Circuit

PSfrag replacements

PI PO

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

wA

wB

wC

AT5 = max{AT1 + d15, AT2 + d25}

AT6 = max{AT3 + d36, AT4 + d46}

AT7 = max{AT5 + d57, AT6 + d67}

AT8 = max{AT5 + d58, AT6 + d68}

ATj = max{ATi + dij : i ∈ input(j)}

Delays are functions of transistor widths:

dij = dij(wj , wnext(j))

JOPT 05/04 – p. 6



Mathematical Formulation (Static Timing)

Circuit

PSfrag replacements

PI PO

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

wA

wB

wC

AT5 = max{AT1 + d15, AT2 + d25}

AT6 = max{AT3 + d36, AT4 + d46}

AT7 = max{AT5 + d57, AT6 + d67}

AT8 = max{AT5 + d58, AT6 + d68}

ATj = max{ATi + dij : i ∈ input(j)}

Delays are functions of transistor widths:

dij = dij(wj , wnext(j))

JOPT 05/04 – p. 6



Mathematical Formulation (Static Timing)

Circuit

PSfrag replacements

PI PO

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

wA

wB

wC

AT5 = max{AT1 + d15, AT2 + d25}

AT6 = max{AT3 + d36, AT4 + d46}

AT7 = max{AT5 + d57, AT6 + d67}

AT8 = max{AT5 + d58, AT6 + d68}

ATj = max{ATi + dij : i ∈ input(j)}

Delays are functions of transistor widths:

dij = dij(wj , wnext(j))

JOPT 05/04 – p. 6



Mathematical Formulation (Static Timing)

Circuit

PSfrag replacements

PI PO

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

wA

wB

wC

AT5 = max{AT1 + d15, AT2 + d25}

AT6 = max{AT3 + d36, AT4 + d46}

AT7 = max{AT5 + d57, AT6 + d67}

AT8 = max{AT5 + d58, AT6 + d68}

ATj = max{ATi + dij : i ∈ input(j)}

Delays are functions of transistor widths:

dij = dij(wj , wnext(j))

JOPT 05/04 – p. 6



Optimization Problem (Delay Minimization)

min
AT,w

,s,z

max{ATi : i ∈ PO}

s.t. ATj = max{ATi + dij(wj , wnext(j)) :

i ∈ input(j)}

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)
∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax

, smin ≤ s ≤ smax

PSfrag replacements

PI PO

wA

wB

wC

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

PSfrag replacements

t

V

AT

50%

1

0

min
x

max
i

fi(x) −→
min
x,z

z

s.t. z ≥ fi(x) ∀i

JOPT 05/04 – p. 7



Optimization Problem (Delay Minimization)

min
AT,w

,s,z

max{ATi : i ∈ PO}

s.t. ATj = max{ATi + dij(wj , wnext(j)) :

i ∈ input(j)}

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)
∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax

, smin ≤ s ≤ smax

PSfrag replacements

PI PO

wA

wB

wC

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

PSfrag replacements

t

V

AT

50%

1

0

min
x

max
i

fi(x) −→
min
x,z

z

s.t. z ≥ fi(x) ∀i

JOPT 05/04 – p. 7



Optimization Problem (Delay Minimization)

min
AT,w

,s

,z
z

s.t. z ≥ ATi i ∈ PO

ATj ≥ ATi + dij(wj , wnext(j)

, si

) i ∈ input(j)

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)
∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax

, smin ≤ s ≤ smax

PSfrag replacements

PI PO

wA

wB

wC

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

PSfrag replacements

t

V

AT

50%

1

0

min
x

max
i

fi(x) −→
min
x,z

z

s.t. z ≥ fi(x) ∀i

JOPT 05/04 – p. 7



Optimization Problem (Delay Minimization)

min
AT,w,s,z

z

s.t. z ≥ ATi i ∈ PO

ATj ≥ ATi + dij(wj , wnext(j), si) i ∈ input(j)

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)

∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax, smin ≤ s ≤ smax

PSfrag replacements

PI PO

wA

wB

wC

s1

s2

s3

s4

s5

s6

s7

s8

s
15

s25

s36

s46

s57

s
58s 6

7

s68

PSfrag replacements

t

V

s
s

5%

95%1

0

min
x

max
i

fi(x) −→
min
x,z

z

s.t. z ≥ fi(x) ∀i

JOPT 05/04 – p. 7



Optimization Problem (Delay Minimization)

min
AT,w,s,z

z

s.t. z ≥ ATi i ∈ PO

ATj ≥ ATi + dij(wj , wnext(j), si) i ∈ input(j)

sj ≥ sij(wj , wnext(j), si) i ∈ input(j)
∑

Aiwi ≤ Amax

Ci(w) ≤ Cmax
i i ∈ PI

βmin
i ≤

wPFET
i

wNFET
i

≤ βmax
i i ∈ G

wmin ≤ w ≤ wmax, smin ≤ s ≤ smax

PSfrag replacements

PI PO

wA

wB

wC

s1

s2

s3

s4

s5

s6

s7

s8

s
15

s25

s36

s46

s57

s
58s 6

7

s68

PSfrag replacements

t

V

s
s

5%

95%1

0

min
x

max
i

fi(x) −→
min
x,z

z

s.t. z ≥ fi(x) ∀i

JOPT 05/04 – p. 7



Simulation of a Gate

G

D

G

S

D

S

PSfrag replacements

vin vout

tt

it

ic

it = g(w)f(vGS , vDS)

ic = C(wnext)
dv
dt

System of differential and algebraic equations:
Conservation laws
(Parasitic) capacitancies: Include dv/dt terms
I-V characteristics for conducting devices

JOPT 05/04 – p. 8



Simulation of a Gate - Numerical Methods

“Traditional approach”
Solve DAE system by standard integration method
Step size control (in time)
Solve nonlinear system of equations

Need to evaluate I-V characteristic functions
and its gradients (expensive)

PSfrag replacements
I

V
Sensitivities expensive

SPECS (Visweswariah, 1991)

Replace I-V characteristics by piecewise constant
approximations

PSfrag replacements
I

V
Cheap table lookups
i piecewise constant
v piecewise linear
Very simplified numerics

JOPT 05/04 – p. 9



Simulation of a Gate - Numerical Methods

“Traditional approach”
Solve DAE system by standard integration method
Step size control (in time)
Solve nonlinear system of equations

Need to evaluate I-V characteristic functions
and its gradients (expensive)

PSfrag replacements
I

V
Sensitivities expensive

SPECS (Visweswariah, 1991)

Replace I-V characteristics by piecewise constant
approximations

PSfrag replacements
I

V
Cheap table lookups
i piecewise constant
v piecewise linear
Very simplified numerics

JOPT 05/04 – p. 9



Simulation with SPECS

G

D

G

S

D

S

PSfrag replacements

vin vout

t t

it

ic

it = g(w)f̃(vGS , vDS)

ic = C(wnext)
dv
dt

Keep track of i, v, and dv/dt at all nodes

Can easily find next event time tevent when next
segment in I-V characteristic is reached

Update all i, v, and dv/dt in neighboring nodes

PSfrag replacements
I

V

JOPT 05/04 – p. 10



SPECS

“Event-driven” simulator (discretize in i instead of time)

Very fast (“local updates”, simple algebraic operations)

Derivatives (in direct or adjoint approach) computed with little overhead

Up to 5% timing inaccuracy

Circuits with several 100,000 transistors simulated

Here, only small circuits (gates) are simulated

JOPT 05/04 – p. 11



Properties of Optimization Problem

The nonlinear functions dij and sij are computed by simulation

Computationally expensive
First derivatives available
Numerical noise (from simulation)

Many variables and many degrees of freedom

After optimization, transistor widths are snapped to grid
Do not need highly accurate solution

Alternative approach: Dynamic Tuning
Simulate entire circuit at once
Need to be given “input sequence”
more flexible; less pessimistic (+)
Requires very good knowledge of circuit (−)

JOPT 05/04 – p. 12



Properties of Optimization Problem

The nonlinear functions dij and sij are computed by simulation

Computationally expensive
First derivatives available
Numerical noise (from simulation)

Many variables and many degrees of freedom

After optimization, transistor widths are snapped to grid
Do not need highly accurate solution

Alternative approach: Dynamic Tuning
Simulate entire circuit at once
Need to be given “input sequence”
more flexible; less pessimistic (+)
Requires very good knowledge of circuit (−)

JOPT 05/04 – p. 12



EinsTuner

IBM-internal implementation

Original optimization engine: Lancelot (Conn, Gould, Toint)

Lancelot had to be customized (handle noise; made aggressive)

Preprocessing (Pruning)

Used for the design of every custom digital chip in IBM
15% gain in speed over carefully hand-tuned circuits
Designers can now concentrate on other (non-tuning) tasks

New optimization engine: IPOPT

JOPT 05/04 – p. 13



EinsTuner

IBM-internal implementation

Original optimization engine: Lancelot (Conn, Gould, Toint)

Lancelot had to be customized (handle noise; made aggressive)

Preprocessing (Pruning)

Used for the design of every custom digital chip in IBM
15% gain in speed over carefully hand-tuned circuits
Designers can now concentrate on other (non-tuning) tasks

New optimization engine: IPOPT

JOPT 05/04 – p. 13



EinsTuner

IBM-internal implementation

Original optimization engine: Lancelot (Conn, Gould, Toint)

Lancelot had to be customized (handle noise; made aggressive)

Preprocessing (Pruning)

Used for the design of every custom digital chip in IBM
15% gain in speed over carefully hand-tuned circuits
Designers can now concentrate on other (non-tuning) tasks

New optimization engine: IPOPT

JOPT 05/04 – p. 13



IPOPT

JOPT 05/04 – p. 14



Problem Statement

min
x∈Rn

f(x)

s.t. c(x) = 0

xL ≤ x ≤ xU

x Variables
f(x) : R

n −→ R Objective function
c(x) : R

n −→ R
m Equality constraints

xL ∈ (R ∪ {−∞})n Lower bounds
xU ∈ (R ∪ {∞})n Upper bounds

Functions f(x) and c(x) sufficiently smooth (usually C2)

General inequality constraints

d(x) ≤ 0
can be reformulated as

d(x) + s = 0, s ≥ 0

JOPT 05/04 – p. 15



Barrier Methods

min
x∈Rn

f(x)

s.t. c(x) = 0

x ≥ 0

↓

min
x∈Rn

f(x)−µ
n
∑

i=1

ln(x(i))

s.t. c(x) = 0

Barrier Parameter: µ > 0
Idea: x∗(µ) → x∗ as µ → 0.

Solve a sequence of barrier problems
to increasingly tighter tolerances

Fiacco, McCormick (1968)

Interior point NLP algorithms
El-Bakry, Tapia, Tsuchiya, Zhang (1996)

Benson, Shanno, Vanderbei (1997/2003)
[LOQO]

Yamashita (1998)

Forsgren, Gill (1998)

Byrd, Gilbert, Hribar, Nocedal, Waltz
(1999/2003) [KNITRO]

W, Biegler (1999/2004) [IPOPT]

Ulbrich, Ulbrich, Vicente (2000)

Gould, Orban, Toint (2003) [SUPERB]

etc.

JOPT 05/04 – p. 16



Barrier Methods

min
x∈Rn

f(x)

s.t. c(x) = 0

x ≥ 0

↓

min
x∈Rn

f(x)−µ
n
∑

i=1

ln(x(i))

s.t. c(x) = 0

Barrier Parameter: µ > 0
Idea: x∗(µ) → x∗ as µ → 0.

Solve a sequence of barrier problems
to increasingly tighter tolerances

Fiacco, McCormick (1968)

Interior point NLP algorithms
El-Bakry, Tapia, Tsuchiya, Zhang (1996)

Benson, Shanno, Vanderbei (1997/2003)
[LOQO]

Yamashita (1998)

Forsgren, Gill (1998)

Byrd, Gilbert, Hribar, Nocedal, Waltz
(1999/2003) [KNITRO]

W, Biegler (1999/2004) [IPOPT]

Ulbrich, Ulbrich, Vicente (2000)

Gould, Orban, Toint (2003) [SUPERB]

etc.

JOPT 05/04 – p. 16



Barrier Methods

min
x∈Rn

f(x)

s.t. c(x) = 0

x ≥ 0

↓

min
x∈Rn

f(x)−µ
n
∑

i=1

ln(x(i))

s.t. c(x) = 0

Barrier Parameter: µ > 0
Idea: x∗(µ) → x∗ as µ → 0.

Solve a sequence of barrier problems
to increasingly tighter tolerances

Fiacco, McCormick (1968)

Interior point NLP algorithms
El-Bakry, Tapia, Tsuchiya, Zhang (1996)

Benson, Shanno, Vanderbei (1997/2003)
[LOQO]

Yamashita (1998)

Forsgren, Gill (1998)

Byrd, Gilbert, Hribar, Nocedal, Waltz
(1999/2003) [KNITRO]

W, Biegler (1999/2004) [IPOPT]

Ulbrich, Ulbrich, Vicente (2000)

Gould, Orban, Toint (2003) [SUPERB]

etc.

JOPT 05/04 – p. 16



Computation of Search Direction

Barrier Problem (fixed µ)

min
x∈Rn

ϕµ(x) := f(x) − µ
∑

ln(x(i))

s.t. c(x) = 0

Optimality Conditions

∇ϕµ(x) + ∇c(x)λ = 0

c(x) = 0

(x > 0)

Apply Newton’s Method

[

Wk ∇c(xk)

∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

Here:

Wk ≈ ∇2
xxLµ(xk, λk)

Lµ(x, λ) = ϕµ(x)+ c(x)T λ

Use primal-dual approach

Matrix becomes very ill-conditioned

Need to ensure descent properties

JOPT 05/04 – p. 17



Computation of Search Direction

Barrier Problem (fixed µ)

min
x∈Rn

ϕµ(x) := f(x) − µ
∑

ln(x(i))

s.t. c(x) = 0

Optimality Conditions

∇ϕµ(x) + ∇c(x)λ = 0

c(x) = 0

(x > 0)

Apply Newton’s Method

[

Wk ∇c(xk)

∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

Here:

Wk ≈ ∇2
xxLµ(xk, λk)

Lµ(x, λ) = ϕµ(x)+ c(x)T λ

Use primal-dual approach

Matrix becomes very ill-conditioned

Need to ensure descent properties

JOPT 05/04 – p. 17



Computation of Search Direction

Barrier Problem (fixed µ)

min
x∈Rn

ϕµ(x) := f(x) − µ
∑

ln(x(i))

s.t. c(x) = 0

Optimality Conditions

∇ϕµ(x) + ∇c(x)λ = 0

c(x) = 0

(x > 0)

Apply Newton’s Method

[

Wk ∇c(xk)

∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

Here:

Wk ≈ ∇2
xxLµ(xk, λk)

Lµ(x, λ) = ϕµ(x)+ c(x)T λ

Use primal-dual approach

Matrix becomes very ill-conditioned

Need to ensure descent properties

JOPT 05/04 – p. 17



Computation of Search Direction

Barrier Problem (fixed µ)

min
x∈Rn

ϕµ(x) := f(x) − µ
∑

ln(x(i))

s.t. c(x) = 0

Optimality Conditions

∇ϕµ(x) + ∇c(x)λ = 0

c(x) = 0

(x > 0)

Apply Newton’s Method

[

Wk ∇c(xk)

∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

Here:

Wk ≈ ∇2
xxLµ(xk, λk)

Lµ(x, λ) = ϕµ(x)+ c(x)T λ

Use primal-dual approach

Matrix becomes very ill-conditioned

Need to ensure descent properties

JOPT 05/04 – p. 17



Line Search

Need to find αk ∈ (0, 1] to obtain new iterates

(xk+1, λk+1) = (xk, λk) + αk (∆xk, ∆λk)

1. Keep xk positive (“fraction-to-the-boundary rule”):
Determine largest ατ

k ∈ (0, 1] such that (τ ≈ 0.99)

xk + ατ
k∆xk ≥ (1 − τ)xk > 0

2. Backtracking line search with αk = ατ
k, 1

2ατ
k, 1

4ατ
k, . . . to ensure global

convergence (to first-order optimal point)

Line search filter method

JOPT 05/04 – p. 18



Line Search

Need to find αk ∈ (0, 1] to obtain new iterates

(xk+1, λk+1) = (xk, λk) + αk (∆xk, ∆λk)

1. Keep xk positive (“fraction-to-the-boundary rule”):
Determine largest ατ

k ∈ (0, 1] such that (τ ≈ 0.99)

xk + ατ
k∆xk ≥ (1 − τ)xk > 0

2. Backtracking line search with αk = ατ
k, 1

2ατ
k, 1

4ατ
k, . . . to ensure global

convergence (to first-order optimal point)

Line search filter method

JOPT 05/04 – p. 18



Line Search

Need to find αk ∈ (0, 1] to obtain new iterates

(xk+1, λk+1) = (xk, λk) + αk (∆xk, ∆λk)

1. Keep xk positive (“fraction-to-the-boundary rule”):
Determine largest ατ

k ∈ (0, 1] such that (τ ≈ 0.99)

xk + ατ
k∆xk ≥ (1 − τ)xk > 0

2. Backtracking line search with αk = ατ
k, 1

2ατ
k, 1

4ατ
k, . . . to ensure global

convergence (to first-order optimal point)

Line search filter method

JOPT 05/04 – p. 18



A Line Search Filter Method

Fletcher, Leyffer (1998), . . .

Alternative to merit functions

Idea:
min ϕµ(x)

s.t. c(x) = 0

min θ(x) min ϕµ(x)

PSfrag replacements

θ(x)=‖c(x)‖

ϕµ(x)

(θ(xk),ϕµ(xk))

(0
,ϕ

µ
(x

∗
))

γθ(xk)

γθ(xlL
)

γθ(xlR
)

JOPT 05/04 – p. 19



A Line Search Filter Method

Need to avoid cycling

⇓

Store some previous
(θ(xl), ϕµ(xl)) pairs in Filter

PSfrag replacements

θ(x)=‖c(x)‖

ϕµ(x)

(θ(xk),ϕµ(xk))

(0
,ϕ

µ
(x

∗
))

γθ(xk)

γθ(xlL
)

γθ(xlR
)

JOPT 05/04 – p. 19



IPOPT

Implemented as IPOPT (Fortran 77 / C) [soon C++]

Compares well with other NLP solvers as general purpose code

Available as open source from COIN-OR
http://www.coin-or.org/Ipopt

Includes interfaces to AMPL and CUTEr/SIF [soon Matlab, GAMS]

Is available at Argonne’s NEOS Server

Used for
Dynamic optimization (discretized DAE constraints)
Nonlinear model predictive control
Parameter estimation
MPCC (Raghunathan, Biegler, 2004)

JOPT 05/04 – p. 20



Circuit Tuning + IPOPT

JOPT 05/04 – p. 21



Integration of IPOPT in EinsTuner

PSfrag replacements

PI PO

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT8

d
15

d25

d
36

d46

d57

d
5
8d 6

7

d68

wA

wB

wC

min
AT,w

ATlatest

s.t. ATlatest ≥ ATi

ATj ≥ ATi + dij(wi)

. . .

wmin ≤ w ≤ wmax

Approximate 2nd derivatives with
limited-memory BFGS

Factorize linear system with WSMP
(Gupta), a sparse direct parallel solver

Overall faster and more robust than
previous optimization engine

Released into production

Next slide:

51 benchmark problems
(n=1,261,. . . ,161,701)

JOPT 05/04 – p. 22



Breakdown of CPU time — Lancelot

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Rest

LANCELOT

Simulation

JOPT 05/04 – p. 23



Breakdown of CPU time — Ipopt

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Rest

IPOPT Rest

Linear System

Simulation

JOPT 05/04 – p. 24



Conclusion

Circuit Tuning
Large-scale nonlinear optimization problem
Gate simulation by event-driven simulator SPECS
Used for the design of every custom digital circuit at IBM

IPOPT
Barrier method
Line search filter method
Good practical performance as general purpose NLP solver
Increased performance in EinsTuner and allows parallel version

http://www.coin-or.org/Ipopt

JOPT 05/04 – p. 25



References

http://www.research.ibm.com/people/a/andreasw

A. Wächter, C. Visweswariah and A. R. Conn (2003)
Large-Scale Nonlinear Optimization in Circuit Tuning
to appear in: Future Generation Computer Systems, special issue on the Speedup/PARS
workshop in Basel, Switzerland

A. Wächter and L. T. Biegler (March 2004)
On the Implementation of an Interior-Point Filter Line-Search Algorithm for
Large-Scale Nonlinear Programming
Research Report RC 23149, IBM T. J. Watson Research Center, Yorktown, USA

A. Wächter and L. T. Biegler (August 2001, revised Februrary 2004)
Line Search Filter Methods for Nonlinear Programming: Motivation and Global
Convergence
Research Report RC 23036, IBM T. J. Watson Research Center, Yorktown, USA

A. Wächter and L. T. Biegler (August 2001, revised Februrary 2004)
Line Search Filter Methods for Nonlinear Programming: Local Convergence
Research Report RC 23033, IBM T. J. Watson Research Center, Yorktown, USA

JOPT 05/04 – p. 26


	Outline
	Digital Circuit
	Digital Circuit
	Digital Circuit
	Digital Circuit

	Circuit Tuning
	Mathematical Formulation (Static Timing)
	Mathematical Formulation (Static Timing)
	Mathematical Formulation (Static Timing)
	Mathematical Formulation (Static Timing)

	Optimization Problem (Delay Minimization)
	Optimization Problem (Delay Minimization)
	Optimization Problem (Delay Minimization)
	Optimization Problem (Delay Minimization)
	Optimization Problem (Delay Minimization)

	Simulation of a Gate
	Simulation of a Gate - Numerical Methods
	Simulation of a Gate - Numerical Methods

	Simulation with SPECS
	SPECS
	Properties of Optimization Problem
	Properties of Optimization Problem

	EinsTuner
	EinsTuner
	EinsTuner

	Problem Statement
	Barrier Methods
	Barrier Methods
	Barrier Methods

	Computation of Search Direction
	Computation of Search Direction
	Computation of Search Direction
	Computation of Search Direction

	Line Search
	Line Search
	Line Search

	A Line Search Filter Method
	A Line Search Filter Method

	IPOPT
	Integration of IPOPT in EinsTuner
	Breakdown of CPU time --- Lancelot
	Breakdown of CPU time --- Ipopt
	Conclusion
	References

